Achievable Error Probabilities for Composite Hypothesis Testing

Pierre Moulin Yen-Wei Huang

University of Illinois Microsoft

Urbana, IL Redmond, WA

CUHK

November 17, 2014

Outline

- I. Introduction
- II. Likelihood Ratio Threshold Tests
- III. Generalized NP Tests
- IV. Asymptotics

Simple Hypothesis Testing

• Observe length-n sequence $\mathbf{y} \in \mathcal{Y}^n$, test simple hypotheses

$$H_0: \mathbf{Y} \sim \mathbb{P} \quad vs. \quad H_1: \mathbf{Y} \sim \mathbb{Q}$$

- Randomized decision rule $\delta(\mathbf{y}) \triangleq \Pr\{\text{Say } H_0 | \mathbf{Y} = \mathbf{y}\}, \mathbf{y} \in \mathcal{Y}^n$
- Neyman-Pearson test: minimize false-alarm error probability $\mathbb{E}_{Q}[\delta(\mathbf{Y})]$ subject to constraint $\mathbb{E}_{P}[\delta(\mathbf{Y})] \leq 1 \epsilon$ on miss prob.
- The value of the minimum is denoted by $\beta_{1-\epsilon}(\mathbb{P},\mathbb{Q})$
- Randomized Likelihood Ratio Tests are Neyman-Pearson tests

$$\delta(\mathbf{y}) = \Pr\{\text{Say } H_0 | \mathbf{Y} = \mathbf{y}\} = \begin{cases} 1 & : L(\mathbf{y}) > \eta \\ \gamma & : L(\mathbf{y}) = \eta \\ 0 & : L(\mathbf{y}) < \eta \end{cases}$$

with likelihood ratio $L(\mathbf{Y}) = \frac{d\mathbb{P}(\mathbf{Y})}{d\mathbb{Q}(\mathbf{Y})}$ and threshold η

Gaussian Hypothesis Testing

• Here $\mathcal{Y} = \mathbb{R}$, $\mathbb{P} = P^n$, $\mathbb{Q} = Q^n$ with $P = \mathcal{N}(0, 1)$, $Q = \mathcal{N}(\theta, 1)$

- Sample mean $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \implies \mathcal{N}(0, 1/n) \text{ vs } \mathcal{N}(\theta, 1/n)$
- Assume $\theta > 0$
- NP test $\delta_{NP}(\overline{Y}) = \mathbb{1}\{\overline{Y} \le \tau\}$, threshold $\tau = n^{-1/2}\mathcal{Q}^{-1}(\epsilon)$

•
$$\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}) = \mathbb{Q}\{\overline{Y} \le \tau\} = \mathcal{Q}(\theta\sqrt{n} - \mathcal{Q}^{-1}(\epsilon))$$

• Asymptotics: use $Q(t) \sim \frac{\exp\{-t^2/2\}}{t\sqrt{2\pi}}$ as $t \to \infty$, then

$$\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}) \sim \frac{\exp\{-\frac{n}{2}\theta^2 + \theta\sqrt{n}\mathcal{Q}^{-1}(\epsilon) - [\mathcal{Q}^{-1}(\epsilon)]^2/2\}}{\theta\sqrt{2\pi n}}$$

• Error exponent = $\frac{1}{2}\theta^2 = D(P||Q)$ (as expected from Stein's lemma)

Composite Hypothesis Testing

• Observe length-n sequence $\mathbf{y} \in \mathcal{Y}^n$, test simple hypothesis H_0 against composite hypothesis H_1 with k alternatives:

$$H_0: \mathbf{Y} \sim \mathbb{P}$$

$$H_1: \mathbf{Y} \sim \mathbb{Q}_j \text{ for some } 1 \leq j \leq k$$

- Applications to statistics, outlier hypothesis testing, and multiuser information theory.
- This work does not address problems where the number of alternatives is uncountable.
- Will assume $\mathbb{P} = \prod_{i=1}^n P_i$ and $\mathbb{Q}_j = \prod_{i=1}^n Q_{ji}$

Example: Gaussian hypothesis testing, k = 2

- Here $\mathcal{Y} = \mathbb{R}$, $\mathbb{P} = P^n$, and $\mathbb{Q}_j = Q_j^n$ for j = 1, 2 with $P = \mathcal{N}(0, 1)$, $Q_1 = \mathcal{N}(\theta_1, 1)$, $Q_2 = \mathcal{N}(-1, 1)$.
- Consider tests that are functions of $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and have power 1ϵ

- $\epsilon_1 + \epsilon_2 = \epsilon$ \Rightarrow free parameter ϵ_1
- What is an optimal test at significance level 1ϵ ?

- Compare with oracle LRT which "knows j"
- Asymptotics of oracle LRT:

$$\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_1) \sim \frac{\exp\{-\frac{n}{2}\theta_1^2 + \theta_1\sqrt{n}\mathcal{Q}^{-1}(\epsilon) - [\mathcal{Q}^{-1}(\epsilon)]^2/2\}}{\theta_1\sqrt{2\pi n}}$$

$$\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_2) \sim \frac{\exp\{-\frac{n}{2} + \sqrt{n}\mathcal{Q}^{-1}(\epsilon) - [\mathcal{Q}^{-1}(\epsilon)]^2/2\}}{\sqrt{2\pi n}}$$

GLRT

- Generalized Likelihood Ratio $L_{G}(\mathbf{y}) = \frac{d\mathbb{P}(\mathbf{y})}{\max_{1 \leq j \leq k} d\mathbb{Q}_{j}(\mathbf{y})}$
- (Deterministic) GLRT with threshold η :

$$\delta_{GLRT}(\mathbf{y}) = \begin{cases} 1 & : L_{G}(\mathbf{y}) \ge \eta \\ 0 & : L_{G}(\mathbf{y}) < \eta \end{cases}$$

• Equivalently,

$$\delta_{\text{GLRT}}(\mathbf{y}) = \mathbb{1} \left\{ \min_{1 \le j \le k} \frac{d\mathbb{P}(\mathbf{y})}{d\mathbb{Q}_j(\mathbf{y})} \ge \eta \right\}$$

• Widely used, simple to implement, same error exponents as oracle LRT in some settings

GLRT in Gaussian setting

- GLRT test statistic $\Lambda_{\text{GLRT}}(\overline{Y}) = \mathbb{1}\left\{\min_{j=1,2}\log\frac{p(\overline{Y})}{q_j(\overline{Y})} \geq \tau_{\epsilon}\right\}$ = $\mathbb{1}\left\{-\frac{1}{\sqrt{n}}\mathcal{Q}^{-1}(\epsilon_1) \leq \overline{Y} \leq \frac{\theta_1^2 - 1}{2\theta_1} + \frac{1}{\theta_1\sqrt{n}}\mathcal{Q}^{-1}(\epsilon_1)\right\}$
- Nonsymmetric case: assume $\theta_1 > 1$

• Asymptotics of false-positive error probabilities:

$$e(1) = \exp\left\{-\frac{(\theta_1^2 + 1)^2}{8\theta_1^2}n + O(\sqrt{n})\right\}$$

$$e(2) \sim \beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_2)$$

- e(2) is asymptotically same as for oracle LRT, but error exponent $\frac{(\theta_1^2+1)^2}{8\theta_1^2}$ for e(1) is worse than that for oracle LRT $(\frac{\theta_1^2}{2})$
- Can we do better?

II. Likelihood Ratio Threshold Tests

Loglikelihood Ratio Vector

• n component loglikelihood-ratio vectors

$$\mathbf{L}_{i} \triangleq \begin{bmatrix} \log dP_{i}/dQ_{i}^{1}(Y_{i}) \\ \vdots \\ \log dP_{i}/dQ_{i}^{k}(Y_{i}) \end{bmatrix}, \quad 1 \leq i \leq n$$

• loglikelihood-ratio vector

$$\mathbf{Z}_n(\mathbf{Y}) = \sum_{i=1}^n \mathbf{L}_i = \begin{bmatrix} \log d\mathbb{P}/d\mathbb{Q}_1(\mathbf{Y}) \\ \vdots \\ \log d\mathbb{P}/d\mathbb{Q}_k(\mathbf{Y}) \end{bmatrix}$$

- mean vector $\mathbf{D}_i = \mathbb{E}_{P_i}[\mathbf{L}_i] = \{D(P_i || Q_{ji})\}_{j=1}^k$
- covariance matrix $V_i = \text{Cov}_{P_i}(\mathbf{L}_i), \quad i \geq 1$

Likelihood Ratio Threshold Test (LRTT)

• deterministic test with threshold vector $\boldsymbol{\tau} = [\tau_1, \tau_2, \cdots, \tau_k]'$:

$$\delta_{\text{LRTT}}(\mathbf{y}) \triangleq \mathbb{1}\{\mathbf{Z}_n(\mathbf{y}) \geq \boldsymbol{\tau}\}$$

• GLRT is a special case with $\tau = [\tau, \tau, \cdots, \tau]'$:

$$\delta_{\text{GLRT}}(\mathbf{y}) = \mathbb{1} \left\{ \min_{1 \le j \le k} \frac{d\mathbb{P}(\mathbf{y})}{d\mathbb{Q}_j(\mathbf{y})} \ge \eta \right\}, \quad \eta = e^{\tau}$$

LRTT for Composite Gaussian HT, k = 2

• Loglikelihood ratio vector \mathbf{Z}_n has two components

$$Z_{n1} = n \left(-\theta_1 \overline{Y} + \theta_1^2 / 2 \right), \quad Z_{n2} = n \left(\overline{Y} + 1 / 2 \right),$$

• LRTT: choose ϵ_1 and ϵ_2 s.t. $\epsilon_1 + \epsilon_2 = \epsilon$ and thresholds

$$\tau_1 = \frac{n}{2}\theta_1^2 - \theta_1\sqrt{n}Q^{-1}(\epsilon_1), \quad \tau_2 = \frac{n}{2} - \sqrt{n}Q^{-1}(\epsilon_2),$$

then
$$\delta_{LRTT}(\overline{Y}) = \mathbb{1}\{-\mathcal{Q}^{-1}(\epsilon_2) \le \sqrt{n}\,\overline{Y} \le \mathcal{Q}^{-1}(\epsilon_1)\}$$

• Recall asymptotics of oracle LRT:

$$\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_1) \sim \frac{\exp\{-\frac{n}{2}\theta_1^2 + \theta_1\sqrt{n}\mathcal{Q}^{-1}(\epsilon) - [\mathcal{Q}^{-1}(\epsilon)]^2/2\}}{\theta_1\sqrt{2\pi n}}$$
$$\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_2) \sim \frac{\exp\{-\frac{n}{2} + \sqrt{n}\mathcal{Q}^{-1}(\epsilon) - [\mathcal{Q}^{-1}(\epsilon)]^2/2\}}{\sqrt{2\pi n}}.$$

• LRTT power $\mathbb{E}_P[\delta_{\text{LRTT}}(\overline{Y})] = 1 - \epsilon$ and false-positive probs

$$e(1) \sim \beta_{1-\epsilon_1}(\mathbb{P}, \mathbb{Q}_1), \quad e(2) \sim \beta_{1-\epsilon_2}(\mathbb{P}, \mathbb{Q}_2)$$

- Same error exponents as "oracle" LRT but the 2nd-order terms are worse since $\epsilon_1, \epsilon_2 < \epsilon \implies \mathcal{Q}^{-1}(\epsilon_1), \mathcal{Q}^{-1}(\epsilon_2) > \mathcal{Q}^{-1}(\epsilon)$
- LRTT outperforms GLRT here

III. Generalized NP Tests

Error Probabilities for Composite HT

- Randomized decision rule $\delta(\mathbf{y}) \triangleq \Pr\{\text{Say } H_0 | \mathbf{Y} = \mathbf{y}\}, \mathbf{y} \in \mathcal{Y}^n$
- Constrain test power $\mathbb{E}_{\mathbb{P}}[\delta(\mathbf{Y})] \geq 1 \epsilon$ for some fixed $\epsilon \in (0,1)$
- False-positive error probabilities $e_j = \mathbb{E}_{\mathbb{Q}_j} [\delta(\mathbf{Y})], 1 \leq j \leq k$
- Set of achievable $\{e_j\}_{j=1}^k$ for power $(1-\epsilon)$ tests:

$$\mathcal{E}_{\epsilon} \left(\mathbb{P}, \left\{ \mathbb{Q}_{j} \right\}_{j=1}^{k} \right) \triangleq \left\{ \left[e_{1}, \dots, e_{k} \right]' : \exists \text{test } \delta \text{ s.t.} \right.$$
$$\mathbb{E}_{\mathbb{P}} \left[\delta(\mathbf{Y}) \right] \geq 1 - \epsilon \text{ and } \mathbb{E}_{\mathbb{Q}_{j}} \left[\delta(\mathbf{Y}) \right] = e_{j}, 1 \leq j \leq k \right\}.$$

• The point $\{\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_j)\}_{j=1}^k$ is achievable only in the rare problems where a *Uniformly Most Powerful* test exists.

• If k = 1, then (Neyman-Pearson)

$$\mathcal{E}_{\epsilon}(\mathbb{P}, \mathbb{Q}_1) = [\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_1), 1 - \beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}_1)]$$

Optimal (non-dominated) test is randomized likelihood ratio test (LRT).

• For $k \ge 2$, nondominated tests are of interest. They are "generalized NP tests" (Lehmann) but generally not LRTs.

$$\Rightarrow \mathcal{E}_{\epsilon}^{\text{GNP}}\left(\mathbb{P}, \left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \subset \mathcal{E}_{\epsilon}\left(\mathbb{P}, \left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right)$$

- Problem here: derive precise asymptotics of nondominated set $\mathcal{E}_{\epsilon}^{\text{GNP}}\left(\mathbb{P}, \{\mathbb{Q}_j\}_{j=1}^k\right)$ when $\mathbb{P} = \prod_{i=1}^n P_i$ and $\mathbb{Q}_j = \prod_{i=1}^n Q_{ji}$.
- Will do so by relating GNP tests to LRTTs
- Achievable error vectors for power (1ϵ) LRTTs:

$$\mathcal{E}_{\epsilon}^{\text{LRTT}}\left(\mathbb{P}, \left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \triangleq \left\{\left[e_{1}, \dots, e_{k}\right]' : \exists \text{LRTT } \delta_{\text{LRTT}} \text{ s.t.}\right.$$

$$\mathbb{E}_{\mathbb{P}}\left[\delta_{\text{LRTT}}(\mathbf{Y})\right] \geq 1 - \epsilon \text{ and } \mathbb{E}_{\mathbb{Q}_{j}}\left[\delta_{\text{LRTT}}(\mathbf{Y})\right] = e_{j}, 1 \leq j \leq k\right\}$$

• Clearly

$$\mathcal{E}_{\epsilon}^{\mathrm{LRTT}}\left(\mathbb{P}, \left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \subset \mathcal{E}_{\epsilon}\left(\mathbb{P}, \left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right)$$

• Achievable false-positive error probabilities for k = 2:

Characterization of GNP Tests

• Proposition 1. (Variation on Lehmann's Theorem 3.6.1). The set \mathcal{E} of achievable error probabilities

$$\left[\mathbb{E}_{\mathbb{Q}_1}[\delta(\mathbf{Y})], \dots, \mathbb{E}_{\mathbb{Q}_k}[\delta(\mathbf{Y})], 1 - \mathbb{E}_{\mathbb{P}}[\delta(\mathbf{Y})]\right]' \in [0, 1]^{k+1}$$

for some test δ is convex and closed. If $[e_1^{\text{FP}}, \dots, e_k^{\text{FP}}, e^{\text{FN}}]'$ is a minimal point in \mathcal{E} with $e^{\text{FN}} \in (0, 1)$, then \exists a nonzero $\boldsymbol{\alpha} \triangleq [\alpha_1, \dots, \alpha_k]' \geq 0$ and a gen'd NP test δ_{GNP} satisfying

$$\mathbb{E}_{\mathbb{P}}[\delta_{\text{GNP}}(\mathbf{Y})] = 1 - e^{\text{FN}},$$

$$\mathbb{E}_{\mathbb{Q}_j}[\delta_{\text{GNP}}(\mathbf{Y})] = e_j^{\text{FP}}, \quad j = 1, \dots, k,$$

and

$$\delta_{\text{GNP}}(\mathbf{y}) = 1$$
 when $d\mathbb{P}(\mathbf{y}) > \sum_{j=1}^{k} \alpha_j d\mathbb{Q}_j(\mathbf{y})$

$$\delta_{\text{GNP}}(\mathbf{y}) = 0$$
 when $d\mathbb{P}(\mathbf{y}) < \sum_{j=1}^{k} \alpha_j d\mathbb{Q}_j(\mathbf{y}).$

Relation to LRTTs

- By Prop. 1, any δ_{GNP} is parameterized by nonnegative $\{\alpha_j\}_{j=1}^k$.
- Fix arbitrarily small $\eta > 0$. Consider two LRTTs $\delta_{\text{LRTT}}^{\text{in}}$ and $\delta_{\text{LRTT}}^{\text{out}}$ with threshold vectors

$$\tau_j^{\text{in}} = \ln\left[(k+\eta)\alpha_j\right], \quad \tau_j^{\text{out}} = \ln\alpha_j, \quad 1 \le j \le k.$$

• **Proposition 2**. The power and the false-positive error vector of δ_{GNP} can be sandwiched as follows:

$$\mathsf{E}_{\mathbb{P}}[\delta_{\mathrm{LRTT}}^{\mathrm{in}}(\mathbf{Y})] \leq \mathsf{E}_{\mathbb{P}}[\delta_{\mathrm{GNP}}(\mathbf{Y})] \leq \mathsf{E}_{\mathbb{P}}[\delta_{\mathrm{LRTT}}^{\mathrm{out}}(\mathbf{Y})]$$

and

$$\mathbf{e}(\delta_{LRTT}^{in}) \leq \mathbf{e}(\delta_{GNP}) \leq \mathbf{e}(\delta_{LRTT}^{out}).$$

• Distributions of \mathbf{Z}_n when k=2:

Related LD Work

• k = 1: Moulin (2013):

$$\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}) = e^{-\sum_{i=1}^{n} D(P_i \| Q_i) + \sqrt{\sum_{i=1}^{n} V(P_i \| Q_i)} \mathcal{Q}^{-1}(\epsilon) - \frac{1}{2} \log n + c + o(1)$$

refining Theorem 3.1 by Strassen (1962) for deterministic tests

• Borovkov and Rogozin (1965), Iltis (1995), Petrovskii (1996), Chaganty and Sethuraman (1996) derived multidimensional strong large deviations theorems

$$\mathbb{P}\left\{\sum_{i=1}^{n} \mathbf{Z}_{i} \in \mathcal{D}_{n}\right\} = \exp\{\cdots\}$$

for rare events, where \mathbf{Z}_i , $i \geq 1$ are independent \mathbb{R}^k valued random variables, and \mathcal{D}_n is a sequence of subsets of \mathbb{R}^k .

 $\overline{\text{The Set}}\,\,\mathcal{Q}_{\text{inv}}$

• Let $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathsf{K})$ and $\epsilon \in (0, 1)$. Then

$$Q_{\mathrm{inv}}(\mathsf{K}, \epsilon) \triangleq \left\{ \boldsymbol{\tau} \in \mathbb{R}^k : \Pr(\mathbf{X} \leq \boldsymbol{\tau}) \geq 1 - \epsilon \right\}$$

Assumptions

(A1) (Bounded moments). There exists $\eta > 0$ s.t. $\forall n \geq 1$,

$$\eta \mathbf{1} < \overline{\mathbf{D}}_{n} \quad \triangleq \quad \frac{1}{n} \sum_{i=1}^{n} \mathbf{D}_{i} < \frac{1}{\eta} \mathbf{1},$$

$$\eta \mathsf{I}_{k} < \overline{\mathsf{V}}_{n} \quad \triangleq \quad \frac{1}{n} \sum_{i=1}^{n} \mathsf{V}_{i} < \frac{1}{\eta} \mathsf{I}_{k},$$

$$\overline{T}_{n} \quad \triangleq \quad \frac{1}{n} \mathbb{E}_{\mathbb{P}}[\|\mathbf{Z}_{n} - n\overline{\mathbf{D}}_{n}\|_{2}^{3}] < \frac{1}{\eta}.$$

(A2) L_i , $i \ge 1$ are strongly nonlattice random vectors.

LRTTs

Theorem 1: Let assumptions (A1) and (A2) hold. Then

$$\mathbf{e} \in \mathcal{E}_{\epsilon}^{\mathrm{LRTT}}\left(\mathbb{P}, \{\mathbb{Q}_j\}_{j=1}^k\right) \quad \Leftrightarrow \ \mathbf{e} = \exp\left\{-n\overline{\mathbf{D}}_n + \sqrt{n}\mathbf{b} - \frac{1}{2}\log n\,\mathbf{1} + \mathbf{c} + o_{\mathbf{b},\mathbf{c}}(1)\right\}$$

where $\mathbf{b} \in \partial \mathcal{Q}_{inv}(\overline{V}_n, \epsilon)$ and \mathbf{c} satisfies a linear inequality constraint Sketch of the Proof.

• Let $\mathbf{Z}_n^* \sim \mathcal{N}(n\overline{\mathbf{D}}_n, n\overline{\mathbf{V}}_n)$. By the multidimensional Berry-Esséen theorem,

$$\forall \boldsymbol{\tau}_n : |\mathbb{P}\{\mathbf{Z}_n \geq \boldsymbol{\tau}_n\} - \Pr\{\mathbf{Z}_n^* \geq \boldsymbol{\tau}_n\}| \leq \gamma_n = O(n^{-1/2})$$

• Consider any LRTT with threshold vector $\boldsymbol{\tau}_n$ and $\mathbb{P}\left\{\mathbf{Z}_n \geq \boldsymbol{\tau}_n\right\} \geq 1 - \epsilon$. Then $\Pr\left\{\mathbf{Z}_n^* \geq \boldsymbol{\tau}_n\right\} \geq 1 - \epsilon - \gamma_n$, hence

$$\boldsymbol{\tau}_n \in n\overline{\mathbf{D}}_n - \sqrt{n}\mathcal{Q}_{\mathrm{inv}}(\overline{\mathsf{V}}_n, \epsilon + \gamma_n).$$

• Define $\mathbf{U}_n = n^{-1/2}(\mathbf{Z}_n - \boldsymbol{\tau}_n)$. For $1 \leq j \leq k$ we have

$$\mathbb{Q}_{j}[\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}] = \mathbb{E}_{\mathbb{Q}_{j}}[\mathbb{1}\{\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}\}]
= \mathbb{E}_{\mathbb{P}}[e^{-Z_{nj}}\mathbb{1}\{\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}\}]
= e^{-\tau_{j}}\mathbb{E}_{\mathbb{P}}[e^{-\sqrt{n}U_{nj}}\mathbb{1}\{\mathbf{U}_{n} \geq \mathbf{0}\}]
\stackrel{(*)}{=} \exp\left\{-\tau_{j} - \frac{1}{2}\log n + O(1)\right\}$$

where (*) is proven using a variation on Chaganty and Sethuraman (1996).

• Use $\boldsymbol{\tau}_n \in n\overline{\mathbf{D}}_n - \sqrt{n}\mathcal{Q}_{\mathrm{inv}}(\overline{\mathsf{V}}_n, \epsilon + \gamma_n)$ and Taylor expansion to conclude that the error vector

$$\mathbf{e} \in \exp \left\{ -n\overline{\mathbf{D}}_n + \sqrt{n}\mathcal{Q}_{\mathrm{inv}}(\overline{\mathsf{V}}_n, \epsilon) - \frac{1}{2}\log n \, \mathbf{1} + O(1) \right\}$$

GNP Tests

• Theorem 2: Let assumptions (A1) and (A2) hold. Then

$$\mathbf{e} \in \mathcal{E}_{\epsilon}^{\text{LRTT}} \left(\mathbb{P}, \{ \mathbb{Q}_{j} \}_{j=1}^{k} \right) \Leftrightarrow$$

$$\mathbf{e} = \exp \left\{ -n\overline{\mathbf{D}}_{n} + \sqrt{n}\mathbf{b} - \frac{1}{2}\log n \, \mathbf{1} + \mathbf{c} - \mathbf{d}_{n} + o_{\mathbf{b}, \mathbf{c}}(1) \right\}$$

where $\mathbf{b} \in \partial \mathcal{Q}_{inv}(\overline{V}_n, \epsilon)$; \mathbf{c} satisfies a linear inequality constraint; and $\mathbf{0} \leq \mathbf{d}_n \leq \ln k\mathbf{1}$

• Proof: application of Theorem 1 and Prop. 2

Conclusion

- LRTTs are simple and powerful for composite HT with k alternatives
- While optimal decision rules for composite hypothesis testing are generally not LRTTs, precise asymptotic characterization of achievable errors is possible.
- Achievable error probabilities are asymptotically within $\ln k$ of achievable error probabilities for deterministic LRTTs.