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‘ I. Introduction I
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‘Simple Hypothesis Testing. \

Observe length-n sequence y € V", test simple hypotheses

Hy: Y~P

Randomized decision rule §(y) £ Pr{Say Hy|Y =y}, y € V"

Neyman-Pearson test: minimize false-alarm error probability
Eq[0(Y)] subject to constraint Ep[6(Y)] < 1 — € on miss prob.

The value of the minimum is denoted by (5 _.(IP, Q)

Randomized Likelihood Ratio Tests are Neyman-Pearson tests

0(y) =Pr{Say Ho|Y =y} =<~

with likelihood ratio L(Y) =
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/ ‘Gaussian Hypothesis Testing. \

e Here Y =R, P=P", Q= Q" with P =N (0,1), Q = N(0,1)

N
Hy H,

e Sample mean Y =+ 3" | Y; = N(0,1/n) vs N'(0,1/n)
o Assume 6 >0

o NP test onp(Y) = 1{Y < 7}, threshold 7 = n=1/2Q~!(¢)




/. B1-c(P,Q) = QY <71} = Q(0y/n — Q' (e)) \

2
e Asymptotics: use Q(t) ~ epr\;Qt_W/ 2} as t — oo, then

exp{—50”+60y/nQ " (e) — [Q7'(¢)]*/2}
0+/2mn

61—€<]P>7 Q) ~

e Error exponent = 26% = D(P||Q)
(as expected from Stein’s lemma)
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‘Composite Hypothesis Testing'

Observe length-n sequence y € V", test simple hypothesis Hy
against composite hypothesis H; with k alternatives:

Hy: Y~P
Hi: Y~Q;forsomel<j<Ek

Applications to statistics, outlier hypothesis testing, and

multiuser information theory.

This work does not address problems where the number of

alternatives is uncountable.

Will assume P =[[;_, P, and Q; =[], Qjq

~




e Here Y =R, P=P", and Q; = Q7 for j = 1,2 with
P=N(0,1), Q1 = N(01,1), Q2 = N(-1,1).

e Consider tests that are functions of Y = % > o Y; and have

power 1 — €

say H " say Ho say Hi

—1

® c; + €65 =€ = free parameter ¢;

\o What is an optimal test at significance level 1 — €7

/ Example: Gaussian hypothesis testing, k£ = 2 I \

/
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/ e Compare with oracle LRT which “knows j”

e Asymptotics of oracle LRT:
exp{—307 +01v/nQ ' (e) — [Q7 ' ()]°/2}

61—€<]P)7Q1> ~ 91\/%

exp{—§ +vnQ () — [Q7'(¢)]*/2}

2m™n

Bl—e(Pa QZ) ~

~
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GLRT '

Generalized Likelihood Ratio Lg(y) = dP(y)

maxi <<t dQ;(y)

(Deterministic) GLRT with threshold n:

dgLrr(Y) =

Equivalently,

) . dP(y)
dcrrr(y) =1 {1213'1216 dQ;(y) = 77}

Widely used, simple to implement, same error exponents as

oracle LRT in some settings

10




‘GLRT in Gaussian setting'

e GLRT test statistic Aqrrr(Y) =1 {minjzl,g log ;((??)) > 7-6}

2
1—1

= 1{-=Q07(e)) <V < Y + 72207 (e)}

e Nonsymmetric case: assume 67 > 1

<y,
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/ e Asymptotics of false-positive error probabilities:

(61 +1)°
exp {— 362
/81—6 (Pa QQ)

n+o<¢ﬁ>}

Y

e ¢(2) is asymptotically same as for oracle LRT, but error

(9%8;21 ) for e(1) is worse than that for oracle LRT (

exponent

e Can we do better?

~

01
>

)
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/ ‘II. Likelihood Ratio Threshold Tests. \
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/ ‘Loglikelihood Ratio Vector' \

e n component loglikelihood-ratio vectors

log dP;/dQ (Y;)

L, & : . 1<i<n

log dP;/dQF(Y;)

e loglikelihood-ratio vector

) og dP/dQ, (Y)
Z,(Y) =) L;= :

log d]P)/ko(Y)_

® Imean vector Dz = Epi [Lz] = {D(Pz”sz) ?-::1

\o covariance matrix V; = Covp, (L;), i>1 /
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/ Likelihood Ratio Threshold Test (LRTT)I \

e deterministic test with threshold vector 7 = [y, 79, , 7]’

ourrr(y) £ 1{Z,(y) > 7}

e GLRT is a special case with 7 = [7,7,--- ,7]":

, dP(y)
o > — T
daLrr(Y) =1 {énjlgk 10:(3) > 77} . n=e
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/ LRTT for Composite Gaussian HT, £ = 2' \

—1

say Hy say H say H

e Loglikelihood ratio vector Z, has two components
Zni =n(=01Y +607/2), Zp=n(Y +1/2),

e LRTT: choose €1 and €5 s.t. €1 + €2 = € and thresholds

=50 - 0VnQ T (@), =g - ViQ N (e)

\ then Sy rrT(Y) = 1{—0 7 1(e3) < /nY < O 1(e1)}

/
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Recall asymptotics of oracle LRT"

b (B0 ~ CPEEH VRO (9~ [QTOF/2)

017/ 27mn
exp{~% + Q' (e) — [0 (©)*/2}

2m™n

51—€(P7 QQ) ~

LRTT power Ep[dirrT(Y)] = 1 — € and false-positive probs
6(1) ~ /31—61 (]P)a Ql)a 6(2) ~ /31—62 (]P)a QQ)

~

Same error exponents as “oracle” LRT but the 2nd-order terms

are worse since 1,63 < ¢ = Q1 (e1), Q Hex) > Q7 1(e)

LRTT outperforms GLRT here

/
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/ ‘III. Generalized NP Tests. \
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/ ‘Error Probabilities for Composite HTI \

e Randomized decision rule §(y) = Pr{Say Hy|Y =y},y € J"
e Constrain test power Ep[6(Y)] > 1 — € for some fixed € € (0, 1)
e False-positive error probabilities e; = Eq. [0(Y)], 1 <j <k

e Set of achievable {e;}*_, for power (1 — €) tests:

Ee (IP’, {Qj};?:l) = {le, .. . ex] @ Ttest 6 s.t.
Ep[6(Y)] >1—€and Eg, [6(Y)] =¢;,1 <j <k}.

e The point {S1_.(P,Q;)}%_, is achievable only in the rare

problems where a Uniformly Most Powerful test exists.

\_ /
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/ e If k =1, then (Neyman-Pearson) \

ge(Pa Ql) — [ﬁl—e(Pa Ql)a 1 — Bl—E(IP)) Ql)]

Optimal (non-dominated) test is randomized likelihood ratio
test (LRT).

e For k > 2, nondominated tests are of interest. They are
“generalized NP tests” (Lehmann) but generally not LRTs.

_ gONP (p, {Qj}§:1> C &, (IP% {Qj}§:1>
/

\_
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Problem here: derive precise asymptotics of nondominated set\
k n n

SGGNP <P, {Q]}jzl) when P = Hz':l Pz and QJ = Hizl Qﬂ

Will do so by relating GNP tests to LRTT's

Achievable error vectors for power (1 —¢€) LRTTs:

ELRTT (1@, {@j}ﬁ?zl) 2 {le1,... ex) : ILRTT Spprr sit.
Ep [0Lrrr(Y)] > 1 — € and Eg, [oLrrr(Y)] = €;,1 < j < k}

Clearly
ELRTT (p) {Qj};?:l) C & (P, {Qj}le)
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/ e Achievable false-positive error probabilities for k£ = 2:

€1 — €

e(2) eLrTT[€1]

/
PS GLRT

Achievable e
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‘Characterization of GNP Tests.

e Proposition 1. (Variation on Lehmann’s Theorem 3.6.1).

The set £ of achievable error probabilities

Eo[0(Y)l, -, Eg[6(Y)l, 1-Eefo(v)]] €[0,1]*!

FP _FN

~

for some test § is convex and closed. If [efF ... efF efN] is a

minimal point in £ with efN € (0,1), then 3 a nonzero
a = [ag,...,ap] >0 and a gen’d NP test dgnp satisfying

E]P[5GNP (Y)] = 1 — EZFN,
EQj [5GNP(Y)] = GFP, j — 1,...,]6‘,

d
i ocnp(y) =1 when dP(y) > Zﬁ;l a;dQ;(y)

Sanp(y) =0 when dP(y) <0 a;dQ;(y).
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‘Relation to LRTTSI \

e By Prop. 1, any dgnp is parameterized by nonnegative {«; };?:1

e Fix arbitrarily small > 0. Consider two LRTTs % and
op%rr with threshold vectors

ot =Il(k+nay), " =Ina;, 1<j<Fk

e Proposition 2. The power and the false-positive error vector
of dgnp can be sandwiched as follows:

Ep[61Rrr(Y)] < Ep[dane(Y)] < Ep[6pRrr(Y)]

and

e(5inRTT) < e(danp) < 9(531]?{13’1"1‘)-
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Distributions of Z,, when k = 2:

29
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IV. Asymptotics I
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/ Related LD Work. \

e k= 1: Moulin (2013):

Bi_(P,Q) = e~ Sy D(Pi|Qi)++/>30 1 VI(P[|Qq) Q7 (e)— % log ntc+o(1)

refining Theorem 3.1 by Strassen (1962) for deterministic tests

e Borovkov and Rogozin (1965), Iltis (1995), Petrovskii (1996),
Chaganty and Sethuraman (1996) derived multidimensional

strong large deviations theorems

for rare events, where Z;, i > 1 are independent R* valued

random variables, and D,, is a sequence of subsets of RF.

\_ /
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/ ‘The Set Qinvl

e Let X ~ N(0,K) and € € (0,1). Then

Qinv (K, €) = {7 € RF:Pr(X<7)>1- €}

VK2 Q7 (e)

! VK1 Q@ (e)

28
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(A1) (Bounded moments).
n 1 < ﬁn
nly < Vn

Th

\_

‘ Assumptions I

There exists n > 0 s.t. Vn > 1,

1 < 1
A
e —EjD-<—1,
n. Co

1 < 1
—E V;, < — g,
ni n

1 — 1
~Ep[||Zn — nDn 3] < —.
n n

|I>

(A2) L;,i > 1 are strongly nonlattice random vectors.
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/ ‘ LRTTs ' \

Theorem 1: Let assumptions (A1) and (A2) hold. Then
e ¢ ELRIT (IP, {Qj};?:l) < e = exp {—nﬁn ++/nb — % lognl+c+ ob,c(l)}

where b € 0Qiny (Vn, ¢) and c satisfies a linear inequality constraint

Sketch of the Proof.
o Let Z7 ~ N(nﬁn,nvn)

By the multidimensional Berry-Esséen theorem,
V1n:  |P{Z, > 7.} —Pr{Z: > 7,} <y = O(n~?

e Consider any LRTT with threshold vector 7,, and
P{Z, >7,} >1—¢€ Then Pr{Z > 1,} >1— € —~,, hence

\ Tn € nDy — VN Qine (Vi €+ 0). /
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/0 Define U,, = n_l/Q(Z —T5). For 1 < j <k we have \

n

Qj [Zn > Tn] — E@j []l{zn > Tn}]
= Eple %" 1{Z, > T,}]
= e TEple VUi 1{U, > 0}]

% 1
*) exp {—Tj —5 logn + O(l)}

where (*) is proven using a variation on Chaganty and
Sethuraman (1996).

o Use 7, € nD,, — /nQinv(Vn, € + v,) and Taylor expansion to
conclude that the error vector

e € exp {—nﬁn + V1nQiny Vi, €) — % logn 1+ O(l)}

\_ /
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/ GNP Tests ' \

e Theorem 2: Let assumptions (A1) and (A2) hold. Then
ec M (IP’, {Q; }§:1> &
e = exp {—nﬁn ++/nb — % lognl+c¢c—d, + ob,c(l)}

where b € 0Qiny (Vn, €); c satisfies a linear inequality constraint; and

0<d, <lnkl

e Proof: application of Theorem 1 and Prop. 2
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/ ‘ Conclusion I \

e LRTTSs are simple and powerful for composite HT with &

alternatives

e While optimal decision rules for composite hypothesis testing
are generally not LRTT's, precise asymptotic characterization
of achievable errors is possible.

e Achievable error probabilities are asymptotically within In k& of
achievable error probabilities for deterministic LRTT's.
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